Work for SDSS – Senior Software Developer for Apache Point Observatory

Many people contribute to the success of SDSS, not least the staff working at Apache Point Observatory, where our 2.5m Sloan Telescope is located.

The below job add for a Senior Software Developer to support engineering and observing at Apache Point Observatory is copied from a posting on the New Mexico State University website: http://jobs.nmsu.edu/postings/28105


New Mexico State University is seeking a technical and computer-oriented person for a Senior Software Developer position to support daytime engineering and night-time astronomical observing at Apache Point Observatory (APO), in Sunspot, NM. The observatory at Sunspot NM will be location of work place. Work schedule on site is generally M-F 8-4:30.

Responsibilities include; designs, implements/installs, maintains, and administers computer, network, and phone infrastructure including hardware and software. Monitors Zenoss, overall performance to proactively identify potential issues and tune appropriately. Providse 24/7 high reliability systems with security and analysis – splunk and Bro. Performs root cause analysis on failed components and implements corrective measures. Works with others to address problems, implement new instrumentation and capabilities. Internal and external customer support and good communication skills are required. Familiar with cluster and virtual systems.

Relevant experience includes hands-on system administration, computer system and network management and development and system security. Proficiency in Unix/Linux, RedHat KVM, C, Python, VxWorks, RTEMS,FreePBX, Vyatta and VyOS,Mac OS, Modeling language – UML. Technical writing, HTML5, CSS, js, frameworks and nodej applications.

Must be able to work at 9500 ft MSL, provide critical support off hours, holidays and weekends.

Benefits: Group medical, hospital, life, dental, and disability insurance. State educational retirement, workers compensation, sick and annual leave, and unemployment compensation.
See http://hr.nmsu.edu/benefits/

Paper/email documents will not be accepted. Required documents (CV/Resume, 3 references, unofficial copy of transcripts) must be attached to the NMSU electronic application system at http://jobs.nmsu.edu.

Employment is contingent on funding and eligibility for employment in U.S. and results of a background verification. Target start date is July 1, 2017.

Direct link to the posting on the NMSU website: http://jobs.nmsu.edu/postings/28105

Where there’s a data release, there’s documentation!

Last week, more than a dozen SDSS IV-midables gathered in St Andrews, Scotland for a very important task: preparing the documentation for the Fourteenth SDSS Data Release.  This information — from high-level overviews of the surveys to column-by-column description of the files — is one of the reasons SDSS is the most highly cited dataset in the history of astronomy.  (Too strong?  No, it’s actually true: Madrid & Macchetto 2006, 2009.)

The APOGEE-2 Team love documenting – Gail Zasowksi succeeds in breaking Jen Sobeck’s concentration.

SDSS holds one of these documentation workshops for every data release: e.g., DocuFeest (DR13), DocuLuau (DR12), DocuGras (DR10), and DocuFiesta (DR9).  As the DR14 incarnation was being held in Scotland, it was dubbed the DocuCeilidh — “Ceilidh” is a Gaelic term for an evening full of traditional music, dancing, and storytelling.

The MaNGA documentation team (plus Bonnie) lay out their plans for the week.

Over four days, the DR14 DocuCeilidh team added or updated 180 webpages and rewrote more than 50 data models.  There were 12 operating Slack channels, meters of emails, and almost non-stop discussion across the tables, even as people ducked in and out of the room to sit on numerous telecons and other meetings.

More evidence of the team hard at work documenting SDSS-IV data.

Rita Tojeiro and Johan Comparat took charge of updating the information for eBOSS, which is releasing its first data in DR14.  MaNGA’s updates were overseen by Kyle Westfall, Amy Jones, David Stark, David Law, and Anne-Marie Weijmans.  In addition, José Sánchez-Gallego, Brian Cherinka, Sofia Meneses-Goytia, and Renbin Yan (joining remotely) made some advance preparations for MaNGA’s DR15 data products.  For its very first data release, APOGEE-2 was represented by Jen Sobeck and Gail Zasowski, with Jon Holtzman in close email contact (even outside of reasonable working hours…).

Jordan Raddick, Bonnie Souter, and Joel Brownstein (joining remotely) were kept busy answering technical questions, keeping a schedule, and making sure everyone had a functional platform in which to work.  SDSS-IV Spokesperson Karen Masters made great progress on the DR14 release paper, and also started adding credit lines to all images on the data release site, in advance of switching to a Creative Commons Attribution license for all SDSS images.  And Anne-Marie — in addition to the MaNGA documentation — kept a masterful hand on the organizational details and provided a steady stream of delicious treats to keep everyone fueled.

When docuCeilidhing we recommend you eat shortbread.

But even among the many, many person-hours of work put in (over 400, through the week), the Sloanies (of course) found a way to have a good time.  They explored St Andrews’ castle and cathedral ruins, sampled a wide range of Scottish whiskies, and attended a classical concert starring SDSS’s own Dr. Weijmans.  They even engaged in an exhilarating spot of ceilidh dancing, and spent a morning spying on some of the 46,200 nesting pairs of puffins on an island in the Firth of Forth.

Some of the team too a break to climb the St Rule’s Tower in St Andrews Cathedral.

A more traditional Ceilidh. Spot the SDSS-IV team members….

More evidence of dancing.

Walking for science on the Isle of May. We saw some Puffins. We went home happy.

DR14 is scheduled for July 31, and while there’s still some work to do before we deliver our latest product to the world, the DocuCeilidh accomplished quite a bit of the legwork for it to be a success.  In the meantime, plans are already in the works for the DR15 DocuTBD…stay tuned!


This post was written by Gail Zasowski.

The APOGEE-South First Light Field — APOGEE-2 Sur. Observaciones de Primera Luz

This post was written by Carlos Roman (Instituto de Astronomía, UNAM, Mexico), with help from Roger Cohen (Universidad de Concepción, Chile) and Guy Stringfellow (University of Colorado). Spanish by Carlos Roman.

La región 30 Doradus en la Nube Grande de Magallanes (NGM) fue seleccionada como objetivo para la placa de primera luz del programa APOGEE-2 Sur en el Observatorio de Las Campanas. Esto se decidió en base a algunos razonamientos importantes:

The 30 Doradus region in the Large Magellanic Cloud (otherwise known as the Tarantula Nebula) was selected as the First Light plate for the APOGEE South Survey at Las Campanas Observatory. Several reasons stand out for this choice:

Las Nubes de Magallanes, tanto la Grande como la Pequeña, son dos de los objetos más representativos de el cielo del hemisferio sur. Estas son dos de entre un grupo muy pequeño de galaxias visibles al ojo humano, sin ayuda de telescopios, y son bien conocidas por los habitantes de las regiones australes de nuestro planeta. Las Nubes de Magallanes son también los miembros más cercanos del llamado Grupo Local de Galaxias de la Vía Láctea, lo cual significa que también contienen a los ambientes extragalácticos más cercanos con los que podemos comparar lo que observamos en nuestra Galaxia. Por esta razón, han sido objeto de númerosos estudios, que incluyen mapas muy completos en muchas longitudes de onda, obtenidos con instrumentos en la Tierra y en el Espacio, y desde los observatorios más importantes, incluyendo el Telescopio VISTA del Observatorio Europeo Austral (European Southern Observatory o ESO por su sigla en inglés), o los telescopios espaciales Spitzer, Herschel y GALEX.

The Large and the Small (LMC, SMC) Magellanic Clouds are among the most representative features of the South Hemisphere sky. They are among the handful of galaxies visible to the unaided human eye and are well known to the public in all Austral regions of the planet. The Magellanic Clouds are also the closest members in the Local Group of the Milky Way, which means they are the closest extragalactic environments to which we can compare our own, and therefore they have been the subject of copious studies, that include comprehensive, multi-wavelength surveys both ground and space-based, with facilities like the ESO-Vista Telescope, the Spitzer, Herschel and GALEX space observatories.

La NGM es particularmente famosa por su actividad de formación de estrellas. A pesar de ser una galaxia de morfología irregular y de tener un tamaño relativamente pequeño, su tasa de formación estelar es extremadamente alta. Los complejos de gas molecular en la NGM contienen algunos de los cuneros estelares más brillantes que hemos podido observar, y esto es porque producen muchas estrellas masivas. De hecho, algunas de las estrellas más masivas que se conocen se formaron en la NGM, y en particular, se están formando y desarrollando en la región 30 Doradus, también conocida como la Nebulosa de la Tarántula, una hermosa región de hidrógeno ionizado (o región HII) parcialmente iluminado por el grupo de la estrella R136 en el cúmulo estelar NGC 2070. Este grupo contiene alrededor de 10 de las estrellas más masivas que se conocen, incluyendo a la estrella R136a1, con una masa que se cree supere 300 veces la del Sol, y que es tan lumuinosa como 9 millones de estrellas tipo solar. R136a1 es la estrella más masiva que conocemos.

The Large Magellanic Cloud is particularly famous for its star formation activity. Despite being an irregular, relatively small galaxy, its star forming rate is extremely high. The molecular gas complexes in the LMC host some of the brightest stellar nurseries we can observe, and this is because they produce large numbers of massive stars. In fact, some of the most massive stars known are born in the LMC and in particular, they are being born in the 30 Doradus region, also known as the Tarantula Nebula, a beautiful ionized Hydrogen (HII) region partly illuminated by the star R136 group in the stellar cluster NGC 2070. This group contains about 10 of the most massive stars known, including the source R136a1, with an estimated mass of over 300 solar masses and a luminosity almost 9 millon times higher than our Sun’s. R136a1 is currently the most massive star known to date.

La NGM fue observada como parte del programa APOGEE-2 Sur. En poco tiempo, el instrumento APOGEE proveerá de espectros infrarrojos de alta resolución de miles de estrellas en ambas Nubes de Magallanes, que proveerán de una base de datos sin precedentes que permitirá la reconstrucción de sus historias de formación estelar y de la evolución de sus poblaciones estelares, permitiendo compararlas con las de nuestra Galaxia.

The LMC will be well covered in the APOGEE-2S survey. APOGEE will provide with infrared, high resolution spectra for thousands of stars in both Magellanic Clouds, which will provide an unprecedented database that will allow the reconstruction of their star formation and chemical evolution histories, allowing us to compare them with those of the Milky Way.

La razón por la que se escogió la región 30 Doradus como el campo de primera luz para el relevamiento APOGEE-2 Sur, es debido a su importancia como objeto astronómico, pero también contó su belleza. En las figuras que incluimos abajo, mostramos algunos mapas en colores falsos de la NGM construidas con datos en varias longitudes de onda, y en donde hemos marcado la posición del campo observado con APOGEE, centrado en una posición muy cercana a 30 Doradus. En la primera imagen se muestra a la NGM en el óptico, donde podemos distinguir la población principal de estrellas en la Nube, así como varias regiones HII que se ven como zonas de nebulosidad. En la segunda imagen, vemos a la NGM como fue observada por el Levantamiento de Legado SAGE, del telescopio espacial infrarrojo Spitzer: este mapa muestra en magnífico detalle el brillo de las regiones gaseosas iluminado por estrellas recientemente formadas a lo largo y ancho de la NGM. El tercer mapa, muestra a la NGM como fue observada por el Telescopio Espacial Herschel en el infrarrojo lejano. Esta vez, el mapa traza a detalle la estructura compleja del medio interestelar en la NGM, conformado por una intrincada red de burbujas y filamentos, moldeados por los vientos de las estrellas masivas y los cúmulos estelares en las que se formaron. Sobre esta imagen, colocamos el campo de APOGEE, y señalamos con puntos pequeños todas las estrellas observadas en la placa de primera luz. Ademas, escogimos cuatro de los espectros observados, que mostramos en la parte de la derecha. Estos espectros pertenecen a cuatro estrellas muy masivas de NGM.

We chose the 30 Doradus region as the First Light plate for the APOGEE2S survey because of its importance as an astrophysical subject but also because of its beauty as illustrated in the following three image, where we have highlighted the field of view of the region we will observe with APOGEE, centered close to 30 Doradus.

DSS optical map of the LMC. We can distinguish the main stellar population of the cloud and several HII regions seen as gaseous bubbles. Image Credit: Carlos Roman, SDSS-IV and DSS.

The LMC as seen by the SAGE Legacy Survey of the galaxy made by the Spitzer Space Telescope: it shows in magnificient detail, the glow from gaseous regions illuminated by recently formed stars across the whole galaxy. Image Credit: Carlos Roman, SDSS-IV and Spitzer.

The same region but as seen with the Herschel Space Telescope in the Far-Infrared, this time tracing the complex structure of the interstellar medium of the LMC, seen as an intricated network of bubbles and filaments excavated by the winds of the massive stars and their clusters. Image Credit: Carlos Roman, SDSS-IV and Herschel.

El la cuarta figura, mostramos un acercamiento al campo de primera luz en 30 Doradus y sus alrededores, donde se señala el campo del espectrógrafo APOGEE desde el telescopio Dupont de 2.5m en su óptica principal en el Observatorio de Las Campanbas. Este campo abarca un área de poco más de 3 grados cuadrados, o 16 veces el área de la Luna llena. Dentro de esta área, se obtuvieron espectros para casi 270 objetivos científicos, que se indican en el mapa con símbolos de distintos colores.

Below we show a close-up of the 30 Doradus region and its surroundings, where we have outlined the field of view of the APOGEE spectrograph from Las Campanas Observatory 2.5m Dupont telescope. This field of view spans over 3 square degrees, 16 times the area of the full Moon. Inside this area, we have obtained spectra for 270 scientific targets, which we have also sketched in the map with different colored symbols.

Plot showing locations of proposed fibers on plate. Image Credit Carlos Roman.

La lista de objetivos propuesta incluyó:

The list of targets include:

26 Estrellas Variables Luminosas Azules (Luminous Blue Variables o LBV por su sigla en inglés) y candidatos a estrellas tipo Wolf-Rayet, incluida R136a1. Estas son fuentes muy masivas, que tienen vidas muy cortas y se formaron muy recientemente (hace unos pocos millones de años), de modo que trazan el episodio más reciente en la historia de evolución química de la NGM, y a la vez proveen información crucial sobre la cinemática y las propiedades de los cúmulos masivos de estrellas en los que se formaron. Estas estrellas muestran la fase evolucionada de estrellas muy masivas, y se sabe que muestran grandes variaciones de brillo debido al hecho de que están expulsando rápidamente sus capas externas por la acción de poderosos vientos estelares. La estrella Eta Carinae en nuestra galaxia la Vía Láctea, es un ejemplo bien conocido de este tipo de estrellas. Las LBV también tienen espectros muy característicos, con líneas que presentan lo que se conoce como perfiles tipo P-Cygni, que parecieran mostrar simultáneamente absorción y emisión. Estas características espectrales indican, precisamente, los procesos físicos relevantes a la acción de los vientos.

a) 26 Luminous Blue Variables and Wolf Rayet star candidates, including R136a1. These are very massive sources, which are very short lived and formed very recently, so they trace the current episode in chemical evolution in the LMC as well as crucial information on the kinematics and properties of the massive clusters in which they form. These stars are the evolved stages of very massive stars and they are known to have large variations in brightness due to the fact that they are expelling their external layers by powerful winds. The Milky Way star Eta Carinae is a well known example of this kind of star. LBV stars also very characteristic spectra, with lines that present what is known as a P-Cygni profile, which appears both as an emission and absorption. These features indicate, precisely, the physical processes relevant to the winds.

55 estrellas masivas (tipos espectrales OB) adicionales en el campo de 30 Doradus y en regiones cercanas de formación estelar masiva. Estos objetos fueron seleccionados a partir de una compilación, basada en fotometría infrarroja del proyecto SAGE (A. Bonanos et al., 2009 AJ, 138, 1003), y de un programa de espectroscopia óptica de las complejos de formación estelar N159/N160, localizados al Sur de 30 Doradus (C. Fariña et al., 2009, AJ, 138, 2).

b) 55 additional massive (OB) star candidates in the 30 Dor and surrounding star forming complexes. These targets were selected from the compilation of A. Bonanos, based on infrared photometry from the Spitzer SAGE Legacy Survey of the LMC (2009 AJ, 138, 1003), and from the optical spectroscopic survey of the N159/N160 star forming complexes -located South of 30 Dor- by C. Fariña (2009 AJ, 138, 2).

42 estrellas Super-gigantes, azules, amarillas y rojas. Estas estrellas son equivalentes a distintos tipos de estrellas enanas como el Sol, pero en estos casos sus clases de luminosidad las clasifican como gigantes y super-gigantes. Las estrellas azules son típicamente decenas o cientos de veces más masivas que nuestro Sol. Las estrellas amarillas son de masas más parecidas a las del Sol, mientras que las rojas son estrellas hechas con apenas una fracción de la masa del Sol.

c) 42 blue, red and yellow Supergiants. These stars are giant and supergiant (known as Class I and II) equivalents of dwarf stars like our Sun. Blue stars are typically tens to hundreds of times more massive than the Sun. Yellow stars are closer in mass to our Sun, and red stars are stars made from only a fraction of a solar mass.

80 estrellas tipo Gigantes Rojas y de Secuencia Principal, que representan la población general de la NGM, seleccionadas a partir de fotometría infrarroja. Estas fuentes proveen de una primera mirada a la cinemática, las abundancias químicas y la distribución de metalicidades en las poblaciones de estrellas de la NGM. Hay una relación importante entre estas poblaciones y las estrellas masivas que se observaron, ya que las primeras muy posiblemente se originaron en agregaciones estelares como las que ahora albergan a las estrellas masivas.

b) 80 red giant and 26 main-sequence stars from the mainstream population of the LMC, selected from near-IR photometry. These sources will provide a first look at the kinematics, the chemical abundances and the metallicity distribution function in the stellar populations of the LMC. There is an important link between these populations and the massive stars we are studying, as the first ones were most likely originated in stellar clusters like those hosting the massive stars.

40 objetos asociados con regiones del medio interestelar, principalmente regiones HII asociadas con cúmulos masivos de estrellas. Estos objetos proveen información importante acerca de las propiedades del medio interestelar (gas y polvo) en la NGM, que pueden ser trazadas por líneas características en los espectros, como las llamadas bandas interestelares difusas, pero también por líneas de absorción producidas por carbón y otros metales presentes en el polvo interestelar. La capacidad del espectrógrafo APOGEE para producir información sobre las velocidades radiales, serán esenciales para saber más sobre la estructura cinemática del medio interestelar en la NGM, y cómo las propiedades del medio se relacionan con los diversos ambientes presentes en esa galaxia.
Se incluyeron, finalmente, 32 posiciones vacías para hacer estimaciones del brillo de fondo en la región.

c) 40 targets associated to local ISM regions, mostly HII regions associated with massive star clusters. These targets will provide important information about the properties of the interstellar medium (gas and dust) in the LMC, which can be traced by specific features in the spectra, like the so-called diffuse interstellar bands, but also by absorption features that are produced by carbon and other metals in the dust. The ability of APOGEE to provide information on the radial velocities of the gas will provide crucial information about the kinematical structure of the gas in the LMC, and how the properties of the interstellar medium relate to the diversity of environments present in the galaxy.

Las observaciones de primera luz se tomaron a principios de este mes. Abajo se muestra una imagen compuesta con datos del observatorio espacial Herschel, las posiciones de las fibras usadas y algunos ejemplos de los datos que se obtuvieron.

The first light data was taken earlier this month. Below we show a composite with the Herschel data, fibres overlaid and some examples of the spectral data that was obtained.

First light data for APOGEE2-S instrument. Spectra are of massive stars in the Tarantula Nebula. Image Credit: Carlos Roman.

Here is a link to the press release about this first light for APOGEE South.

A Snapchat Story about APOGEE

In this compilation of SnapChat’s, Mita Tembe, from the University of Virginia talks about her work with the APOGEE Instrumentation.

Mita began working on hardware for the APOGEE-2S spectrograph as an undergraduate at the University of Virginia and has been working full time for the project as a Lab Technician/Research Assistant since September 2015.

The video includes a tour of the dome at Las Campanas, a high-level explanation of how the APOGEE instrument works, the installation of two optics, and Mita answering questions some students sent in.

SDSS Summer Interns Apply SDSS Science to Small Telescopes

By Kate Meredith.  Kate is the Director of Education Outreach at the University of Chicago Yerkes Observatory.  Kate began working with SDSS data while still a high school science teacher and continued that work in her role with SDSS as lead educator for formal education.  She is the primary developer of the SDSS Voyages website.  In her first year as Education Director at Yerkes, Kate launched a summer intern program.  In this post, Kate describes one of the projects interns lead during the summer of 2016.  

Rebecca Chen and Lindsay Berkhout are sophomore physics majors at the University of Chicago. Both chose the astronomy specialization, and both spent the summer of 2016 as interns at Yerkes Observatory . They were two of the 12 undergraduates that helped launch the first ever Yerkes Education Outreach internship program.  Their goal was to take precise photometric measurements of targets (how bright objects are) with instruments including the 24-inch telescope at Yerkes, as well as Stone Edge Observatory’s 20-inch telescope, located in Sonoma, California.

Rebecca Chen positioning new SDSS filters for use with the 24 inch reflecting telescope at Yerkes Observatory.

“We both came in, and we didn’t know anything,” Berkhout laughs. But they soon got up to speed, and ended the summer with a tested methodology that allows not only them, but students following in their footsteps, to use the telescopes to measure the brightness of objects to within 5% the value obtained by the venerable Sloan Digital Sky Survey (SDSS).

The long-term goal on Yerkes’ side is to be able to extend SDSS catalog to bright stars. The survey, designed to measure many faint targets, has gaps when it comes to measuring the brightest stars. But the Yerkes and Stone Edge telescopes—large for small observatories, but tiny compared to SDSS’ 100-inch mirror—can tackle the bright stars with ease. The trick is being able to compare data using the very different instruments of SDSS and the observatory telescopes.Chen and Berkhout were interested in more dramatic events; they wanted to measure the lightcurves of recent supernovae. But both projects rely on being able to precisely measure the brightness of targets. And figuring out how to reliably attain such precision with the Stone Edge and Yerkes telescopes became the students’ summer objective.

Richard Kron, a professor at the University of Chicago and former director of Yerkes Observatory, worked closely with the students. But he says he was mostly there to answer their technical questions, and let them guide the direction of the work themselves—something Chen and Berkhout handled with aplomb, though he notes that other students might desire a more hands-on approach to mentoring.

He introduced the pair to software packages—Aperture Photometry Tool and Topcat—to help them in their work, and advised on details such as calculating uncertainty in their measurements. He admits that his first instinct is often to push through and rush to big results. And students likewise often want to do something novel and exciting—like observing supernovae.

Intern Lindsay Berkhout installs SDSS filters in CCD camera at Yerkes Observatory.

But Kron says it’s important to remember how much time new students take to assimilate the big concepts at play: operating the telescopes, learning new software routines, finding and measuring the targets, understanding uncertainty. “Make sure the student feels really in command,” he suggests. “It’s okay if you don’t cover quite as much as your original dreams had suggested.”

“There’s still a lot of work to do,” Berkhout acknowledges. Steep learning curves, but also telescope downtime, contributed to the sometimes slow pace. “The next step is actually taking data and using this methodology to get results,” she says, something they ran out of time for in the short summer.  “I think that if someone else takes the project they could go wherever they want with it, whether it’s bright stars or variable stars, or supernovae.”
Berkhout and Chen left behind a detailed guide of the work they did, summarizing the technical details of how to take observations, run them through the software, measure sources’ photometry, and compare it to SDSS values. They also left suggestions for ways future interns might improve from 5% down to within 2% of the SDSS values. And they took with them many more lessons in how to plan and tackle such a project.

“I felt like it was a really nice internship for summer after first year,” Berkhout says. “It was a good way to get involved in a research project that taught us a lot so now we can go to other people and be able to say that we’ve done something. That we learned a lot and we’re competent and can be involved in bigger research projects in the future.”

Chen reflects that, “While we were working it was frustrating, because at times it felt like we weren’t getting anywhere. But at the end of the summer, looking back on all the things we had done, I was like, ‘Oh that’s pretty cool. That’s a project. We did a real project.’”

 

Rebecca Chen and Yerkes Director of Education and SDSS EPO Specialist, Kate Meredith, celebrate the first successful night of observing with the new SDSS filters and several hundred mosquitos at Yerkes Observatory.

¡APOGEE-Sur ha llegado! (APOGEE-South Has Arrived!)

Estamos muy contentos de compartir algunas fotos de la llegada e instalación de APOGEE-Sur en el telescopio du Pont del Observatorio de Las Campanas. Para comenzar, una foto de APOGEE-Sur siendo retirado del contenedor—el mismo contenedor en el que fue colocado el mes pasado en los Observatorios Carnegie.

We are very excited to share with you some photos of the safe arrival and installation of APOGEE-South at the du Pont telescope, Las Campanas Observatory. To start, here is a picture of APOGEE-South being removed from its shipping container — the same container that it was placed in at Carnegie Observatories last month.

1.APOGEE-Sur está siendo retirado del contenedor delante del telescopio du Pont del Observatorio de Las Campanas. APOGEE-South is being removed from its shipping container at the du Pont telescope, Las Campanas Observatory.

APOGEE-Sur está siendo retirado del contenedor delante del telescopio du Pont del Observatorio de Las Campanas.
APOGEE-South is being removed from its shipping container at the du Pont telescope, Las Campanas Observatory.

Un gran equipo humano llevó a cabo la instalación. Abajo se puede ver a los miembros del equipo, excepto Sanjay Suchak, que tomó la fotografía. Están en un laboratorio criostático que fue especialmente construido para APOGEE-Sur en el telescopio du Pont.

A large crew assembled for the installation effort. Below you see the team that assembled on the mountain, except for Sanjay Suchak who took the picture. They are standing together in the cryostat lab that was specially built for APOGEE-South at the du Pont telescope.

1.¡El equipo! En la fila de atrás, de izquierda a derecha: Nick MacDonald (University of Washington), Garrett Ebelke (University of Virginia), Matt Hall (UVa), Mita Tembe (UVa), Fred Hearty (Penn State University) y Steven Majewski (UVa). En la fila de enfrente, de izquierda a derecha: John Wilson (UVa), Jimmy Davidson (UVa) y Juan Trujillo (UW). Créditos: Sanjay Suchak The crew! In the back row, from left to right: Nick MacDonald (University of Washington), Garrett Ebelke (University of Virginia), Matt Hall (UVa), Mita Tembe (UVa), Fred Hearty (Penn State University), and Steven Majewski (UVa). In the front row, from left to right: John Wilson (UVa), Jimmy Davidson (UVa), and Juan Trujillo (UW). Photo credit: Sanjay Suchak

¡El equipo! En la fila de atrás, de izquierda a derecha: Nick MacDonald (University of Washington), Garrett Ebelke (University of Virginia), Matt Hall (UVa), Mita Tembe (UVa), Fred Hearty (Penn State University) y Steven Majewski (UVa). En la fila de enfrente, de izquierda a derecha: John Wilson (UVa), Jimmy Davidson (UVa) y Juan Trujillo (UW). Créditos: Sanjay Suchak
The crew! In the back row, from left to right: Nick MacDonald (University of Washington), Garrett Ebelke (University of Virginia), Matt Hall (UVa), Mita Tembe (UVa), Fred Hearty (Penn State University), and Steven Majewski (UVa). In the front row, from left to right: John Wilson (UVa), Jimmy Davidson (UVa), and Juan Trujillo (UW). Photo credit: Sanjay Suchak

Una vez que APOGEE-Sur fue instalado, había que conectar los largos cables de fibra óptica que unen el instrumento con el telescopio. La tarea comenzó con una reunión para discutir la mejor manera de canalizar los cables de fibra óptica.

Once APOGEE-South was in place, its long fiber optic cables had to be fed to the telescope. To begin with, a meeting took place at the APOGEE-South instrument to discuss what needed to be done to ensure that the fiber optics were routed safely.

1.Discutiendo los procedimientos para canalizar los cables de fibra óptica desde el instrumento APOGEE-Sur al telescopio. Discussing the procedure for routing the fiber optic cables from the APOGEE-South instrument to the telescope.

Discutiendo los procedimientos para canalizar los cables de fibra óptica desde el instrumento APOGEE-Sur al telescopio.
Discussing the procedure for routing the fiber optic cables from the APOGEE-South instrument to the telescope.

Después de ultimar los detalles, Fred, Garrett, Nick, Jimmy y Juan desenrollaron los cables de fibra óptica.

After all the details had been ironed out, Fred, Garrett, Nick, Jimmy, and Juan unrolled the fiber train.

1.Fred, Garrett, Nick, Jimmy y Juan trabajan coordinadamente para desenrollar con cuidado los 50 metros de fibra óptica. Fred, Garrett, Nick, Jimmy, and Juan work in concert to carefully unfurl the 50-meter long fiber train.

Fred, Garrett, Nick, Jimmy y Juan trabajan coordinadamente para desenrollar con cuidado los 50 metros de fibra óptica.
Fred, Garrett, Nick, Jimmy, and Juan work in concert to carefully unfurl the 50-meter long fiber train.

Luego, Garrett desde abajo y Mita desde arriba trabajaron con cuidado para conectar la fibra desde el laboratorio criostático a la cúpula.

Then, Garrett from below and Mita from above worked to carefully feed the fiber train from the cryostat lab into the observatory dome.

1.Izquierda: Garrett en el laboratorio criostático pasando los cables de fibra óptica a través de un orificio en el techo. Derecha: Mita está arriba en la sala de observación, tirando cuidadosamente del cable. También en la foto de la derecha, se aprecia el telescopio (amarillo) y el brazo de soporte (estructura azul oscuro a la izquierda), que será descrito más adelante. Left: Garrett is shown in the cryostat lab feeding the fiber train through a hole in the ceiling. Right: Mita is above the same hole, carefully bringing the fiber train into the observatory room. Also in the right-hand picture, notice the telescope (yellow) and the boom arm (dark blue structure on the left), which will be discussed below.

Izquierda: Garrett en el laboratorio criostático pasando los cables de fibra óptica a través de un orificio en el techo. Derecha: Mita está arriba en la sala de observación, tirando cuidadosamente del cable. También en la foto de la derecha, se aprecia el telescopio (amarillo) y el brazo de soporte (estructura azul oscuro a la izquierda), que será descrito más adelante.
Left: Garrett is shown in the cryostat lab feeding the fiber train through a hole in the ceiling. Right: Mita is above the same hole, carefully bringing the fiber train into the observatory room. Also in the right-hand picture, notice the telescope (yellow) and the boom arm (dark blue structure on the left), which will be discussed below.

Abajo en la sala criostática, los manojos de fibras deben ser conectados al criostato donde reside APOGEE-Sur. Como se muestra más abajo, cada manojo de fibras se acopla a un conector.

Down in the cryostat room, the bundles of fibers need to enter the APOGEE-South’s cryostat, or temperature-controlled inner workings. As shown below, this is managed by plugging each fiber bundle into a port.

Manojos de 30 fibras cada uno son conectados al criostato del instrumento APOGEE-Sur. Bundles of thirty fibers each are ported upon entering the APOGEE-South instrument's cryostat.

Manojos de 30 fibras cada uno son conectados al criostato del instrumento APOGEE-Sur.
Bundles of thirty fibers each are ported upon entering the APOGEE-South instrument’s cryostat.

Arriba en la cúpula, el cable que contiene todas las fibras se entrelaza a un largo brazo (la estructura azul en la imagen de abajo) que mantendrá las fibras suspendidas durante el funcionamiento del instrumento.

Up in the observatory dome, the fiber longlink conduit was dressed to a long boom (the blue trusswork in the picture below) that will keep the fibers suspended during operation.

Después de conectar los manojos de fibras al telescopio, John y Nick usan un ordenador para revisar que todas las conexiones se han hecho correctamente. Mientras tanto, Fred, Garrett y Juan unen las fibras al brazo de soporte. After the fiber bundles were all connected to telescope, John and Nick used a computer to check that they had each been placed in the correct port. Meanwhile, Fred, Garrett, and Juan attached the fiber train to the boom.

Después de conectar los manojos de fibras al telescopio, John y Nick usan un ordenador para revisar que todas las conexiones se han hecho correctamente. Mientras tanto, Fred, Garrett y Juan unen las fibras al brazo de soporte.
After the fiber bundles were all connected to the telescope, John and Nick used a computer to check that they had each been placed in the correct port. Meanwhile, Fred, Garrett, and Juan attached the fiber train to the boom.

Al final de la operación las fibras conectaban el criostato, a través del techo y a lo largo del brazo de soporte, con el telescopio. Para celebrar el éxito, el equipo se puso sus camisetas de APOGEE.

When all was said and done, the fibers were safely installed, from cryostat, through the ceiling, along the boom, to the telescope! To celebrate, the crew wore matching APOGEE T-shirts.

¡Camisetas a tono! Buen trabajo en la instalación de las fibras. Matching T-shirts! Job well done on the fiber installation.

¡Camisetas a tono! Buen trabajo en la instalación de las fibras.
Matching T-shirts! Job well done on the fiber installation.

A continuación, el sistema óptico debe ser colocado en el criostato. Para hacer ésto, el laboratorio criostático fue transformado en una sala limpia para impedir que el polvo y otras partículas contaminaran el interior del instrumento. Este trabajo se está desarrollando ahora—¡deseemos suerte a nuestro equipo en la siguiente etapa de la instalación del instrumento APOGEE-Sur!

Next, the optics have to be placed in the cryostat. To do this, the cryostat lab is being turned into a clean room to prevent dust and other particulates from polluting the inside of the instrument. This work is ongoing — please wish our crew the best of luck on this next stage of the APOGEE-South instrument installation!

Izquierda: Garrett parece particularmente atractivo en su habitación limpia. Derecha: Matt limpia el exterior del criostato de APOGEE-Sur, preparándolo para abrirlo. Left: Garrett looks particularly fetching in his clean room get-up. Right: Matt cleans off the outside of the APOGEE-South cryostat, preparing it to be opened.

Izquierda: Garrett parece particularmente atractivo en su habitación limpia. Derecha: Matt limpia el exterior del criostato de APOGEE-Sur, preparándolo para abrirlo.
Left: Garrett looks particularly fetching in his clean room get-up. Right: Matt cleans off the outside of the APOGEE-South cryostat, preparing it to be opened.

Special thanks to Andres Meza, Carles Badenes, and Barbara Pichardo for making this dual-language blog post possible.

Origin of the Elements in the Solar System

“The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of starstuff.” — Carl Sagan

This is an evocative statement. It gets at the heart of the matter. However, it leaves out all the different ways that stars make the elements. It is not just collapsing stars, it is merging stars, burping stars, exploding stars, and the start of the Universe itself.

Below is the latest version of an evolving periodic table color-coded by the origin of the elements in the Solar System. An original version of this was made by Inese Ivans and me in 2008 and refined and improved by Anna Frebel. Versions highlighting different aspects of the physical processes are available on Inese Ivans’ website.

My current version of the periodic table, color-coded by the source of the element in the solar system.

My current version of the periodic table, color-coded by the source of the element in the solar system. Elements with more than one source have the approximate amount due to each process indicated by the amount of area. Tc, Pm, and the elements beyond U do not have long-lived or stable isotopes. I have ignored the elements beyond U in this plot, but not including Tc and Pm looked weird, so I have included them in grey.

For this version, I tried to avoid the technical terms and jargon used in the original plot. I also updated the sources of the heavy elements to reflect the current semi-consensus. This graphic draws on an enormous amount of labor from astronomers and physicists. In an upcoming blog post, I will give details on my sources and assumptions for interested parties. Note that this is for the solar system. There will be additional versions showing what this plot would look like if you were in the early Universe, or if you consider the origin of the elements on the Earth, etc.

However, the main point of this blog post is to present the chart and address the following question:

Why does your version have different information than the well-known Wikipedia entry?

Continue reading

Photos from SDSS at the AAS229

A number of members of the SDSS have been at the American Astronomical Society meeting in Grapevine, Texas this week. Here are some pictures of activities around our exhibit hall booth, from which among other things we gave SDSS plates to a number of teachers and educators. The plates were a big hit and we successfully distribtuted 9 to educational locations in Texas.

AAS229BoothPanorama

Panoramic view of the booth.

pressconference

The press briefing

GailPlate

Gail Zasowski giving out a plate to a local teacher.

IMG_0212

Another teacher with a plate.

IMG_0197

This school group already had their own plate, but were happy to have a photo with multiple plates.

IMG_0181

Karen Masters showing off the Shenova “Dark Matter” dress with a pattern based on BOSS data. With a BOSS plate.

IMG_0173

Training the next generation of fiber optic technicians?

IMG_0170

Pretending to plug.

IMG_0166

Jen Sobeck interacting with students during the outreach session.

IMG_0163

Kat Barger explaining the survey during the outreach session.

IMG_0160

3D printed galaxies from the Tactile Universe project displayed at the booth.

IMG_0152

MaNGA Data Color-by-Numbers.

periodictable

SWAG: APOGEE periodic tables, MaNGA pens, and SDSS M&Ms.

 

 

 

Final day of SDSS abstracts at #aas229

Talks:

10:10 AM – 10:30 AM
408.02D. A Survey of Peculiar L and T Dwarfs in a Cross-Correlation of the SDSS, 2MASS and WISE Databases
Kendra Kellogg; Stanimir A. Metchev

10:20 AM – 10:30 AM
402.03. Chandra Observations of the Sextuply Imaged Quasar SDSS J2222+2745
David A. Pooley; Saul A. Rappaport

2:00 PM – 2:10 PM
414.01. The Sloan Digital Sky Survey Reverberation Mapping Project: Quasar Reverberation Mapping Studies
Catherine Grier

2:00 PM – 2:20 PM
417.01D. Tidal Interaction among Red Giants Close Binary Systems in APOGEE Database
Meng Sun; Phil Arras; Steven R. Majewski; Nicholas W. Troup; Nevin N. Weinberg

3:00 PM – 3:10 PM
413.06. Compositions of Small Planets & Implications for Planetary Dynamics
Jennifer Johnson; Johanna Teske; Diogo Souto; Katia M. Cunha; Cayman T. Unterborn; Wendy Panero

Posters:
433.03. Searching for GALEX FUV and NUV Detections of BOSS Ultracool Dwarfs
Jonathan Wheatley; Sarah J. Schmidt; Barry Welsh

433.10. Characterization of Detached Main Sequence Binaries Observed by Kepler, SDSS(APOGEE) and Gaia
Christina O. Solis; Paul A. Mason

433.15. Characterizing RR Lyraes using SDSS, Single-Epoch Spectroscopy
Stacy S. Long; Ronald J. Wilhelm; Nathan M. De Lee

SDSS-IV at #aas229: Friday Abstracts

Here are the SDSS related abstracts for Friday 6th January at #aas229.

Talks:

10:00 AM – 10:10 AM
306.01. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: The Clustering of Luminous Red Galaxies Using Photometric Redshifts
Abhishek Prakash

10:50 AM – 11:00 AM
302.05. Composite Spectra of Broad Absorption Line Quasars in SDSS-III BOSS
Hanna Herbst; Fred Hamann; Isabelle Paris; Daniel M. Capellupo

Posters:

347.15. Constraining the Merging History of Massive Galaxies Since Redshift 3 Using Close Pairs. I. Major Pairs from Candels and the SDSS
Kameswara Bharadwaj Mantha et al.

347.34. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity
Andrea Gonzalez Ortiz

347.35. Incidence of WISE-Selected Obscured AGNs in Major Mergers and Interactions from the SDSS
Madalyn Weston; Daniel H. McIntosh; Mark Brodwin; Justin Mann; Andrew Cooper; Adam McConnell; Jennifer L. Nielson

347.38. Properties of Pseudo-bulges and Classical Bulges Identified Among SDSS Galaxies
Yifei Luo; Aldo Rodriguez; David C. Koo; Joel R. Primack; Sandra M. Faber; Yicheng Guo; Zhu Chen; Jerome J. Fang; Marc Huertas-Company

347.55. Spectral Analysis, Synthesis, & Energy Distributions of Nearby E+A Galaxies Using SDSS-IV MaNGA
Olivia A. Weaver; Miguel R. Anderson; Muhammad Wally; Olivia James; Julia Falcone; Allen Liu; Nicole Wallack; Charles Liu

347.56. A Study of E+A Galaxies Through SDSS-MaNGA Integral Field Spectroscopy
Muhammad Wally; Olivia A. Weaver; Miguel R. Anderson; Allen Liu; Julia Falcone; Nicole L. Wallack; Olivia James; Charles Liu

336.04. Results from a Pilot REU Program: Exploring the Cosmos Using Sloan Digital Sky Survey Data
Nancy J. Chanover; Kelly Holley-Bockelmann; Jon A. Holtzman

336.05. The FAST Initiative: Fostering a More Inclusive SDSS Collaboration
Kelly Holley-Bockelmann; Nancy J. Chanover; Adam J. Burgasser; Kelle L. Cruz; Charles Liu; Paul A. Mason; Jesus Pando; Emily L. Rice; Sarah J. Schmidt; Jose R. Sanchez-Gallego; Sara Lucatello; Alfonso Aragon-Salamanca; Francesco Belfiore; Brian Cherinka; Diane Feuillet; Amy Jones; Karen Masters; Audrey Simmons; Ashley Ross; Keivan G. Stassun; Jamie Tayar

343.01. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Overview and Membership Methods
John Donor; Peter M. Frinchaboy; Julia O’Connell; Katia M. Cunha; Benjamin A. Thompson; Matthew Melendez; Matthew D. Shetrone; Steven R. Majewski; Gail Zasowski; Carlos Allende-Prieto; Marc H. Pinsonneault; Alexandre Roman-Lopes; Mathias Schultheis ; Keivan G. Stassun

343.02. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Gradients using SDSS-IV/DR13 and Gaia
Peter M. Frinchaboy; John Donor; Julia O’Connell; Katia M. Cunha; Benjamin A. Thompson; Matthew Melendez; Matthew D. Shetrone; Steven R. Majewski; Gail Zasowski; Carlos Allende-Prieto; Ricardo Carrera; Ana García Pérez; Michael R. Hayden; Fred R. Hearty; Jon A. Holtzman; Jennifer Johnson; Szabolcs Meszaros; David L. Nidever; Marc H. Pinsonneault; Alexandre Roman-Lopes; Ricardo P. Schiavon; Mathias Schultheis ; Verne V. Smith; Jennifer Sobeck; Keivan G. Stassun

343.03. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Optical Extension for Neutron Capture Elements
Matthew Melendez; Julia O’Connell; Peter M. Frinchaboy; John Donor; Katia M. Cunha; Matthew D. Shetrone; Steven R. Majewski; Gail Zasowski; Marc H. Pinsonneault; Alexandre Roman-Lopes; Keivan G. Stassun

344.18. Searching for Long-Period Companions and False Positives within the APOGEE Catalog of Companion Candidates
Duy Nguyen; Nicholas W. Troup; Steven R. Majewski

344.19. The APOGEE DR13 Catalog of Stellar and Substellar Companion Candidates
Nicholas W. Troup

344.20. APOGEE/Kepler Overlap Yields Orbital Solutions for a Variety of Eclipsing Binaries
Joni Marie C. Cunningham; Diana Windemuth; Aleezah Ali; Meredith L. Rawls; Jason Jackiewicz

SDSS-IV at #aas229; Day 2

Tomorrow is ay two of the American Astronomical Society meeting, and SDSS related abstracts I know about are listed below.

Of course we also have the press briefing at 2.15pm.

Talks:

Session 204. Star Formation: Galactic to Extragalactic
204.01. Mapping the High-Dimensional ISM with Kinetic Tomography
Gail Zasowski; Joshua E. Peek; Kirill Tchernyshyov
10.00am, Texas D

Session 216. The Galactic Disk, Galactic Bulge, & Galactic Center
216.01. Chemical Cartography in the Milky Way with SDSS/APOGEE: Multi-element abundances and abundance ratio variations
Jon A. Holtzman; Sten Hasselquist; Jennifer Johnson; Jonathan C. Bird; Steven R. Majewski
10.00am, Dallas 6

Session 221. Star Associations, Star Clusters – Galactic & Extragalactic II
221.03. Two Groups of Red Giants with Distinct Chemical Abundances in the Bulge Globular Cluster NGC 6553 Through the Eyes of APOGEE
Baitian Tang; Roger Cohen; Douglas Geisler; Ricardo P. Schiavon; Steven R. Majewski; Sandro Villanova; Ricardo Carrera; Olga Zamora; D Garcia-Hernandez; Matthew D. Shetrone; Peter M. Frinchaboy; Jose G. Fernandez Trincado
2.30pm, Texas D

Session 224. Large Scale Structure, Cosmic Distance Scale
224.04D. Galaxy-galaxy and galaxy-CMB Lensing with SDSS-III BOSS galaxies
Sukhdeep Singh; Rachel Mandelbaum
2.40pm, Grapevine C

Posters (up all day, special session 5.30-6.30pm in Exhibit Hall):

236.15. SciServer: An Online Collaborative Environment for Big Data in Research and Education
Jordan Raddick; Barbara Souter; Gerard Lemson; Manuchehr Taghizadeh-Popp

237.13. The Formation of COINS: Equity and Inclusion in SDSS
Sarah J. Schmidt; Jose R. Sanchez-Gallego; Nancy J. Chanover; Kelly Holley-Bockelmann; Sara Lucatello; Alfonso Aragon-Salamanca; Francesco Belfiore; Brian Cherinka; Diane Feuillet; Amy Jones; Karen Masters; Audrey Simmons; Ashley Ross; Keivan G. Stassun; Jamie Tayar

240.16. Investigating the Spectroscopic Variability and Magnetic Activity of Photometrically Variable M Dwarfs in SDSS
Jean-Paul Ventura; Aurora Cid; Sarah J. Schmidt; Emily L. Rice; Kelle L. Cruz

240.17. Toward a Comprehensive Sample of VLM Chemical Abundances with APOGEE
Christian Aganze; Jessica L. Birky; Christopher Theissen; Adam J. Burgasser; Sarah J. Schmidt; Johanna K. Teske; Keivan G. Stassun; Jonathan C. Bird

240.18. Modeling Stellar Parameters for High Resolution Late-M and Early-L Dwarf SDSS/APOGEE Spectra
Jessica L. Birky; Christian Aganze; Adam J. Burgasser; Christopher Theissen; Sarah J. Schmidt; Johanna K. Teske; Keivan G. Stassun; Jonathan C. Bird

247.10. Active Galactic Nuclei from He II: a more complete census of AGN in SDSS galaxies yields a new population of low-luminosity AGN in highly star-forming galaxies
Rudolf E. Baer; Anna Weigel; Lia F. Sartori; Kyuseok Oh; Michael Koss; Kevin Schawinski

250.16. EMPCA and Cluster Analysis of Quasar Spectra: Application to SDSS Spectra
Karen Leighly; Adam Marrs; Cassidy Wagner; Francis Macinnis

250.22. Identifying Evolutionary Patterns of SMBHS Using Characteristic Variables of the Quasar AGNs of eBOSS
Sarah K. Martens; Eric M. Wilcots

250.24. Infrared Reverberation Mapping of 17 Quasars from the SDSS Reverberation Mapping Project
Varoujan Gorjian; Yue Shen; Aaron J. Barth; W. N. Brandt; Kyle S. Dawson; Paul J. Green; Luis Ho; Keith D. Horne; Linhua Jiang; Ian D. McGreer; Donald P. Schneider; Charling Tao

250.28. Discovery of a New Quasar: SDSS J022155.26-064916.6
Jacob Robertson; J. Allyn Smith; Douglas L. Tucker; Huan Lin; Deborah J. Gulledge; Mees B. Fix

SDSS-IV at the #AAS229

We look forward to meeting many astronomers and friends of astronomy at the Sloan Digital Sky Survey Booth (819) at the 229th Meeting of the American Astronomical Society (#aas229), happening in Grapevine, Texas this week.

Join us any time at our booth to learn about the current SDSS, and how to make use of our public data for your research and/or teaching of astronomy. We’re right across from a coffee stand!

The booth will be staffed by SDSS collaboration members attending the meeting. Please ask them about their own research. We will also be participating in the EPO visit by local school children.

SDSS-IV will be holding a press briefing at 2.15pm on Thursday 5th January, (Austin 5).

Many collaboration members are presenting their work at the meeting. Below is a listing of science either by collaboration members, or which mentions SDSS or one of our component surveys (APOGEE, MaNGA, eBOSS, TDSS, or SPIDERS) for just the first day, tomorrow Wednesday 4th January (come back tomorrow for updates on SDSS science being presented later in the meeting).

Talks:

Session 103. Mergers,AGN, & GRB Host Galaxies:
103.03. Signatures of AGN feedback
Dominika Wylezalek; Nadia L. Zakamska
10.40am, Texas C

Session 116. Planetary Environments & Habitability
116.03. Habitability in the Local Universe
Paul A. Mason (SDSS FAST Member)
10.40am, Dallas 6

Session 124. Star Associations, Star Clusters – Galactic & Extragalactic I
124.03D. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Neutron Capture Abundance Gradients
Julia O’Connell; Peter M. Frinchaboy; Matthew D. Shetrone; Matthew Melendez; Katia M. Cunha; Steven R. Majewski; Gail Zasowski
2.30pm, Grapevine B

Posters (up all day, special session 5.30-6.30pm in Exhibit Hall):

142.13. Age-Metallicity Relationships Across the Milky Way Galaxy with APOGEE
Colton Casados-Medve; Jonathan C. Bird

145.20. A Study of Low-Metallicity Red Giant Stars in the Ursa Minor Dwarf Spheroidal Galaxy Using APOGEE Survey Data
Wanying Fu; Joshua D. Simon

145.28. Cold Gas in Quenched Dwarf Galaxies using HI-MaNGA
Alaina Bonilla (SDSS REU)

150.01. Quasar Absorption Lines and SDSS Galaxies
Emileigh S. Shoemaker; Jennifer E. Scott; Katarzyna Oldak

156.04. Classifying TDSS Stellar Variables
Rachael C. Amaro (SDSS REU); Paul J. Green

APOGEE-2S: ¡probado, embalado y enviado! Tested, Packed, and Shipped!

The APOGEE-2 instrument team reached a significant milestone this week — the APOGEE-2 South spectrograph has begun its long journey to Chile! It is a clone of the spectrograph that is already operating on the Sloan Telescope, and will soon be operating on Carnegie Observatories’ du Pont telescope at Las Campanas Observatory. Reaching this milestone was no small feat; instrument components needed to be checked and re-checked, the spectrograph had to be meticulously packed, and it had to be transported across North America before being loaded on a ship.

El equipo de instrumentos de APOGEE-2 alcanzó un hito significativo esta semana, ¡el espectrógrafo APOGEE-2 Sur ha comenzado su largo viaje a Chile! Es un clon del espectrógrafo que ya está operando en el telescopio Sloan y pronto funcionará en el telescopio du Pont operado por los Observatorios Carnegie en el Observatorio de Las Campanas. Alcanzar este hito no fue una hazaña menor; las componentes del instrumento necesitaban ser revisadas una y otra vez, el espectrógrafo tenía que ser meticulosamente empaquetado y transportado a través de Norteamérica antes de ser cargado en un barco.

They say a picture is worth a thousand words, but frankly there is no other way but pictures to show how hard the APOGEE hardware team has been working to put all of the pieces together at the University of Virginia.

Dicen que una imagen vale más que mil palabras, pero francamente no hay otra forma que no sea usando imágenes para demostrar lo duro que el equipo de APOGEE ha estado trabajando para juntar todas las piezas en la Universidad de Virginia.

In the left-hand image below is technician Sophia Brunner. She is holding a small mirror, with which she is inspecting what is known as a v-groove block — a component that helps direct the fiber optic cables that pass light from the telescope to the spectrograph itself. On the right you can see a close-up of the v-groove block, with the v-grooves visible above Sophia’s hands. To the left of the v-grooves are channels filled with fiber-optic bundles. When the spectrograph is operational, light from individual stars will be passing through each fiber-optic cable, and so the v-groove block allows the light form each of those stars to be sent separately through the spectrograph and recorded. These fiber optics mean that APOGEE has the capability of simultaneously observing 300 stars!

En la imagen de la izquierda a continuación se encuentra la técnica Sophia Brunner. Ella sostiene un pequeño espejo con el que está inspeccionando lo que se conoce como un bloque de ranura en V, un componente que ayuda a dirigir los cables de fibra óptica por donde pasa la luz desde el telescopio al espectrógrafo. A la derecha se puede ver un primer plano del bloque de ranuras-V, con las ranuras visibles por encima de las manos de Sophia. A la izquierda de las ranuras-V se encuentran canales llenos de haces de fibra óptica. Cuando el espectrógrafo está en funcionamiento, la luz de las estrellas individuales pasará a través de cada cable de fibra óptica, por lo que el bloque de ranura en V permite que la luz de cada una de esas estrellas se envíe por separado a través del espectrógrafo para ser registradas. ¡Estas fibras ópticas significan que APOGEE tiene la capacidad de observar simultáneamente 300 estrellas!

Sophie Brunner is inspecting a v-groove block of the fiber assembly, shown in more detail at right. Sophie Brunner está inspeccionando un bloque de ranura en V del conjunto de fibras, que se muestra con más detalle a la derecha.

Sophie Brunner is inspecting a v-groove block of the fiber assembly, shown in more detail at right.
Sophie Brunner está inspeccionando un bloque de ranura en V del conjunto de fibras, que se muestra con más detalle a la derecha.

How do you work with fiber optic cables? The following pictures illustrate the care and attention necessary to ensure that they do not break (fiber optics are made from glass). On the left, scientist Nick MacDonald is feeding the fiber optic cables through a feed-through in the wall of the APOGEE-2S instrument. It is sort of like feeding a thread through the eye of a needle, only in this case your “thread” can break if you try to force it. On the right, machinist Charles Lam views the 50-meter long cable conduit before fiber installation. The 300 individual fibers are bundled into ten sets of 30 in so-called long-link assemblies. The instrument-side of each long-link assembly is individually fed into the instrument and terminates at a v-groove block as shown above. After all the long-link assemblies were installed they were put into a single conduit and rolled up on a big spool.

¿Cómo trabajas con cables de fibra óptica? Las siguientes imágenes ilustran el cuidado y la atención que son necesarios para asegurar que no se rompan (las fibras ópticas están hechas de vidrio). A la izquierda, el científico Nick MacDonald está alimentando los cables de fibra óptica a través de un orificio en la pared del instrumento APOGEE-2S. Es como pasar un hilo a través del ojo de una aguja, sólo que en este caso el “hilo” puede romperse si se intenta forzarlo. A la derecha, el maquinista Charles Lam inspecciona los paquetes de cables de 50 metros de largo antes de su instalación. En esta imagen, los 300 cables individuales de fibra óptica se envuelven juntos en pequeños paquetes llamados conjuntos de enlace largo; cada conjunto de enlace largo se alimenta a través de una ranura en V individualmente, como se mostró en la imagen anterior. Después de que Charles terminó de inspeccionar los paquetes, éstos se pusieron en un sólo conducto, que posteriormente se enrolló en un gran carrete.

Nick MacDonald is threading long-link assemblies through the side wall of the spectrograph (left). Charles Lam views the conduit stretched out behind the astronomy building at UVa (right). Nick MacDonald está enhebrando los ensambles de enlace largo a través de la pared lateral del espectrógrafo (izquierda). Charles Lam inspecciona todos los ensambles de enlace largo totalmente estirados, antes de ser agrupados en un conducto, justo afuera del edificio de astronomía en la Universidad de Virginia (derecha).

Nick MacDonald is threading long-link assemblies through the side wall of the spectrograph (left). Charles Lam views the conduit stretched out behind the astronomy building at UVa (right).
Nick MacDonald está enhebrando los ensambles de enlace largo a través de la pared lateral del espectrógrafo (izquierda). Charles Lam inspecciona todos los ensambles de enlace largo totalmente estirados, antes de ser agrupados en un conducto, justo afuera del edificio de astronomía en la Universidad de Virginia (derecha).

Once the fibers were in place, the instrument had to be closed up. To test that the spectrograph was working, a single fiber-optic was connected to APOGEE-2S and pointed at the Sun using a small telescope mount. The picture below of all of those happy scientists is all we need to know that the spectrograph performed to specifications.

Una vez que las fibras estuvieron en su lugar, el instrumento tenía que ser cerrado. Para probar que el espectrógrafo funcionaba, una fibra óptica fue conectada a APOGEE-2S y apuntada al Sol usando un pequeño telescopio. La imagen de abajo de estos científicos felices es todo lo que necesitamos para saber que el espectrógrafo cumplió con las especificaciones.

Professor Mike Skrutskie, along with Jimmy Davidson, Mita Tembe, Matthew Hall, and Garrett Ebelke all give the solar test a thumbs up! El Profesor Mike Skrutskie, junto con Jimmy Davidson, Mita Tembe, Matthew Hall y Garrett Ebelke dan a la prueba solar un ¡pulgar hacia arriba!

Professor Mike Skrutskie, along with Jimmy Davidson, Mita Tembe, Matthew Hall, and Garrett Ebelke all give the solar test a thumbs up!
El Profesor Mike Skrutskie, junto con Jimmy Davidson, Mita Tembe, Matthew Hall y Garrett Ebelke dan a la prueba solar un ¡pulgar hacia arriba!

Now it’s time to ship! The cryostat was closed, it was wrapped in a big tarp, loaded onto the delivery truck, and then driven to Pasadena, California.

¡Ahora es hora de enviar! El criostato fue cerrado, envuelto en una lona grande, cargado en el camión de la entrega y después conducido a Pasadena, California.

 

Screen Shot 2016-12-20 at 8.34.00 PM

The APOGEE-2S instrument sits on its load cradle(left), and is carried by forklift onto the moving truck (right). El instrumento APOGEE-2S se encuentra en su cuna de carga (izquierda) y es llevado por una carretilla elevadora al camión de carga (derecha).

The APOGEE-2S instrument and accoutrements are carefully stowed (left) before the truck is closed up and drives off (right). El instrumento APOGEE-2S y sus accesorios se guardan cuidadosamente (izquierda) antes de que el camión se cierre y comience su viaje (derecha).

The APOGEE-2S instrument and accoutrements are carefully stowed (left) before the truck is closed up and drives off (right).
El instrumento APOGEE-2S y sus accesorios se guardan cuidadosamente (izquierda) antes de que el camión se cierre y comience su viaje (derecha).

Two days later, the truck arrived at the Carnegie Observatories in Pasadena, California. The spectrograph and crates were carefully unloaded and stored, awaiting the ocean shipping container, which arrived in the middle of December.

Dos días después, el camión llegó a los Observatorios Carnegie en Pasadena, California. El espectrógrafo y las cajas fueron cuidadosamente descargadas y almacenadas, esperando el contenedor de transporte marítimo, el cual llegará a mediados de diciembre.

A forklift crew unloads APOGEE-2S at the Carnegie Observatories after a successful cross-country trek. Scientist John Wilson gratefully thanks the driving team, Ludden and Gwen, for safely transporting the spectrograph. La tripulación del montacargas descarga APOGEE-2S en los observatorios Carnegie después de un exitoso viaje. El científico John Wilson agradece al equipo de conductores, Ludden y Gwen, por transportar con seguridad el espectrógrafo.

A forklift crew unloads APOGEE-2S at the Carnegie Observatories after a successful cross-country trek. Scientist John Wilson gratefully thanks the driving team, Ludden and Gwen, for safely transporting the spectrograph.
La tripulación del montacargas descarga APOGEE-2S en los observatorios Carnegie después de un exitoso viaje. El científico John Wilson agradece al equipo de conductores, Ludden y Gwen, por transportar con seguridad el espectrógrafo.

Shipping the APOGEE-S spectrograph is a delicate business. The spectrograph has to be securely in place on the load cradle as it was in the truck, and a Shock Logger has to be placed to record any jarring movements during transportation. Below, John Wilson can be seen placing the Shock Logger on the load cradle, before the spectrograph is loaded into the shipping crate.

Transportar el espectrógrafo APOGEE-S es algo delicado. El espectrógrafo debe ser colocado cuidadosamente en su cuna de carga mientras se encuentre en el camión, así mismo se debe instalar un registrador de impactos para monitorear cualquier movimiento brusco que se produzca durante el viaje. Abajo podemos ver a John Wilson, instalando el registrador en la cuna de carga, antes de que el espectrógrafo fuera cargado.

John Wilson is mounting the Shock Logger to the APOGEE-S instrument (left). Then, John helps Greg Ortiz load APOGEE-S onto the Maersk shipping container (right). John Wilson instala un registrador de impactos al instrumento APOGEE-S (izquierda). Más tarde John ayuda a Greg Ortiz a cargar el instrumento en el contendor (derecha).

John Wilson is mounting the Shock Logger to the APOGEE-S instrument (left). Then, John helps Greg Ortiz load APOGEE-S onto the Maersk shipping container (right).
John Wilson instala un registrador de impactos al instrumento APOGEE-S (izquierda). Más tarde John ayuda a Greg Ortiz a cargar el instrumento en el contendor (derecha).

Once the instrument is loaded onto its cargo ship in Long Beach, it will take about three weeks before it reaches San Antonio, Chile. Keep your fingers crossed for a successful last leg of the journey for APOGEE-2S!

Una vez que el instrumento suba al carguero en Long Beach, tomará alrededor de tres semanas en llegar a San Antonio, Chile.¡Mantenga sus dedos cruzados para una última etapa exitosa del viaje para APOGEE-2S!

Special thanks to Andres Meza and Mariana Cano Diaz for making this dual-language blog post possible.

SDSS-IV commitment to inclusivity

The below statement was shared with the SDSS-IV collaboration on 13th November. Following a request we now post it publicly here.


 

We write to affirm our commitment to treat every member of our collaboration with respect and dignity, regardless of their race, ethnicity, age, color, disability, faith, national origin, gender identity, gender expression, sexual orientation, social class, or political beliefs.

This week’s U.S. election results followed a long and divisive 2016 campaign. Our SDSS-IV collaboration is broad and international, and has a significant fraction of members based in the U.S. Our community comes from a range of backgrounds and experiences that may influence how they are impacted by current events.  We urge all members of the collaboration to be mindful of how we treat other members of our community during this challenging time.

We write particularly to express our solidarity with colleagues who have legitimate fears for their safety in the coming months and years. In the days following the election, some of us at U.S. institutions
have heard first-hand reports of harassment and intimidation of our colleagues and students, in some cases based on their race, of a sort that has previously been rare, and by perpetrators who expressed
political motivations.  Whatever one’s philosophy of government or beliefs about what economic, social, and foreign policies are best for the U.S., it is important that we reject such behavior; we hope that all of the U.S. national leaders will do so.

In this environment, we feel the need now to emphasize that in SDSS-IV we are committed to fostering an astronomy community that is safe, welcoming, and inclusive of all people, including those in historically marginalized groups.
SDSS-IV is currently in the process of drafting our Code of Conduct. Collaboration members are invited to comment on the current draft (link is internal website)  by emailing Jennifer Johnson (the Chair of the Code of Conduct Committee). You are also welcome to send comments to the Committee on Inclusiveness in SDSS (coins@sdss.org).

In the meantime please bring any concerns you have about collaboration climate to the collaboration management, or to our Ombudspeople, Jill Knapp and David Weinberg who can be contacted directly and confidentially via ombuds@sdss.org.

A plug plate for the South Downs Planetarium and Science Centre

Yesterday I had the pleasure of giving an SDSS Plug Plate to the South Downs Planetarium and Science Centre, in Chichester, West Sussex. This facility has been run by a team of volunteers and astronomy enthusiasts since 2002. It boasts a 100 seater planetarium, running 8-9public planetarium shows each month, as well as being available for schools bookings. I was visiting the planetarium with a group of First Year Physics students from the University of Portsmouth.

SouthDownsPlate

John Mason takes delivery of SDSS plate 3955 from SDSS-IV Spokesperson, Karen Masters.

 

The organization plan to put the SDSS plate on display, along with their other astronomy displays which include a waxwork model of famous UK amateur astronomer, Sir Patrick Moore and memorabilia from British Astronaut Tim Peake who went to school in the nearby Chichester High School. In addition they discussed plans to show the sky location the plate was designed for in future planetarium shows.

If you’d like to explore the data from this plate, which is in the direction of the constellation “Serpens”, see Plate 3955 in our Skyserver Navigate interface.

SouthDownsPlateCertificate

Certificate of Ownership for Plate 3955.

The South Downs Planetarium and Science Centre now joins museums and science centres from all over the world who display SDSS plates.